If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-15y+24=0
a = 1; b = -15; c = +24;
Δ = b2-4ac
Δ = -152-4·1·24
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{129}}{2*1}=\frac{15-\sqrt{129}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{129}}{2*1}=\frac{15+\sqrt{129}}{2} $
| 100(1.075)^x=200 | | 3x+6x-x=64 | | -4+2/3x=-8 | | 9r-14=-67 | | 13=13= 34(5x+8)43 (5x+8) | | x2+2x=758 | | x2+2x=758 | | -5.2v=26.52 | | -y-2y+15y=0 | | -y-2y+15y=0 | | X8=(x5) | | X8=(x5) | | 3+2x=-4x+4 | | 3+2x=-4x+-4 | | 3+2x=-4x+-4 | | 3+2x=-4x+-4 | | 180=12j | | 180=12j | | 180=12j | | 16x+80= | | 5(2x+5)=10 | | 195=x-0.6x | | m+-15=-17 | | (4x-1)/4=16 | | 54x+77=239 | | F(x)=-7/4x | | x²-42x+5=0 | | 12(5x+13)=696 | | 21y-47y+4=204 | | 21y-47y+4=204 | | (4t)³+10;t=2 | | (2n=82) |